Normalized Convolution Interpolated from an Adaptive Subgrid

Benjamin Ménétrier
NCAR - Boulder, Colorado
August 1st, 2017
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
Explicit convolution

We want to apply a correlation matrix on any grid type.

Advantages of an explicit convolution $\mathbf{C} \in \mathbb{R}^{n \times n}$:

- Explicit choice of the convolution function
- Exact normalization ($C_{ii} = 1$)
- Work on any grid type!

Drawback: cost scales as $O(n^2)$...

To limit the cost, work on a grid subset: $\tilde{\mathbf{C}} = \mathbf{S}\mathbf{C}^s\mathbf{S}^T$ where

- $\mathbf{S} \in \mathbb{R}^{n \times n_s}$ is an interpolation from the subgrid
- $\mathbf{C}^s \in \mathbb{R}^{n_s \times n_s}$ is a convolution matrix on the subgrid

If $n_s \ll n$, then the cost scales as $O(n)$ (interpolation).

Problems with working on a subgrid:

- If n_s is too small, the fonction is distorted,
- Normalization breaks down because of the interpolation: even if \mathbf{C}^s is normalized, $\tilde{\mathbf{C}}$ is not.
Convolution explicite

NICAS method (Normalized Interpolated Convolution from an Adaptive Subgrid) :

\[
\tilde{C} = \text{NSC}^{s}S^{T}N^{T}
\]

where \(\text{N} \) is a diagonal normalization matrix.

Several questions:

- What subgrid? What interpolation?
- What convolution function?
- How to compute the normalization?
- What parallelization method?
- What results/cost/scalability?
- ...
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
Subgrid choice

Full 3D interpolation: hard to compute and to apply in a geophysical model ⇒ \(S \) split into three operators:

\[
S = S^h S^v S^s
\]

<table>
<thead>
<tr>
<th>Grid</th>
<th>Subset of points (number of points)</th>
<th>Subset of levels (number of levels)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>(G^s)</td>
<td>(S^c_2 (n^c_2))</td>
<td>(S^l_1 (n^l_1))</td>
<td>(S^c_2) depending on the level</td>
</tr>
<tr>
<td>(G^v)</td>
<td>(S^c_1 (n^c_1))</td>
<td>(S^l_1 (n^l_1))</td>
<td>(n^c_2 \leq n^c_1)</td>
</tr>
<tr>
<td>(G^h)</td>
<td>(S^c_1 (n^c_1))</td>
<td>(S^l_0 (n^l_0))</td>
<td>(n^l_1 \leq n^l_0)</td>
</tr>
<tr>
<td>(G^f)</td>
<td>(S^c_0 (n^c_0))</td>
<td>(S^l_0 (n^l_0))</td>
<td>(n^c_1 \leq n^c_0)</td>
</tr>
</tbody>
</table>
Choice of the horizontal grid

Black dots: ARPEGE grid at truncation TL149 (set S^C_0)
Choice of the horizontal grid

Green dots: basic subset S^c_1
Choice of the horizontal grid

Red dots: final subset S^c_2 at a level with a short support radius
Choice of the horizontal grid

Red dots: final subset S^c_2

at a level with a medium support radius
Choice of the horizontal grid

Red dots: final subset S_c^2
at a level with a large support radius
Choice of the vertical grid

Levels sampled depending on the vertical support radius. Example: uniform log(pressure) vertical support radius.

ARPEGE levels (black dots) / subgrid levels (red dots)
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
Choice of the convolution function

Gaspari and Cohn (1999) function of compact support radius r:

\rightarrow homogeneous normalized distance $d_{ij}' = \frac{d_{ij}}{r}$
Choice of the convolution function

Gaspari and Cohn (1999) function of compact support radius r

\rightarrow homogeneous normalized distance $d'_{ij} = \frac{d_{ij}}{r}$
Choice of the convolution function

Gaspari and Cohn (1999) function of compact support radius r

\rightarrow heterogeneous normalized distance $d'_{ij} = \frac{d_{ij}}{\sqrt{(r_i^2 + r_j^2)/2}}$
Homogeneous / heterogenous support radius

Homogeneous support radius \rightarrow homogenous subgrid:
Homogeneous / heterogeneous support radius

Heterogeneous support radius → heterogeneous subgrid:
Homogeneous / heterogeneous support radius

Convolution with an homogenous support radius
Homogeneous / heterogeneous support radius

Convolution with an heterogeneous support radius
Sharp support radius gradients

Gaspari and Cohn (1999) function of compact support radius \(r \)

\[d_{ij}' = \frac{d_{ij}}{\sqrt{(r_i^2 + r_j^2)/2}} \]
Sharp support radius gradients

Gaspari and Cohn (1999) function of compact support radius r

\rightarrow heterogeneous normalized distance $d'_{ij} = \frac{d_{ij}}{\sqrt{(r_i^2 + r_j^2)/2}}$
Sharp support radius gradients

Gaspari and Cohn (1999) function of compact support radius \(r \)

\[d'_{ij} = \frac{d_{ij}}{\sqrt{(r_i^2 + r_j^2)/2}} \]
Sharp support radius gradients

Gaspari and Cohn (1999) function of compact support radius r

\rightarrow heterogeneous normalized distance $d_{ij}' = \sum_{k=i}^{j-1} d_{k,k+1}'$ (network)
Sharp support radius gradients

Convolution function for a homogeneous support radius r
Heterogeneous support radius r and subset S_2^c (black dots)
Sharp support radius gradients

Convolution function for a heterogeneous support radius r with the distance-based approach; zone of lower r (dotted)
Convolution function for a heterogeneous support radius \(r \) with the network-based approach; zone of lower \(r \) (dotted)
Convolution functions with complex boundaries of the NEMO grid:

- for a distance-based approach (left)
- for a network-based approach (right)
Subgrid resolution

For a given support radius, a resolution parameter ρ defines the subgrid density:

$$\rho = 8 \text{ (2827 points)}$$
Subgrid resolution

For a given support radius, a resolution parameter ρ defines the subgrid density:

$$\rho = 6 \text{ (1590 points)}$$
For a given support radius, a resolution parameter ρ defines the subgrid density:

$$\rho = 4 \ (706 \text{ points})$$
Subgrid resolution

For a given support radius, a resolution parameter ρ defines the subgrid density:

Horizontal convolution function for a spectral method and for the NICAS method with a decreasing resolution ($\rho = 8, 6$ and 4)
Subgrid resolution

For a given support radius, a resolution parameter ρ defines the subgrid density:

Vertical convolution function for a spectral method and for the NICAS method with a decreasing resolution ($\rho = 8, 6$ and 4)
Normalization computation

Prohibitive cost of applying the non-normalized method to a Dirac at every gridpoint ($O(n^2)$). However, very limited number of nodes involved in the computation of N_{ii}. Number of non-zero nodes:

- 1 node of G^f in δ_i,
- up to 3 nodes of G^h in $S^{hT}\delta_i$ (bilinear interp.)
- up to 6 nodes of G^v in $S^{vT}S^{hT}\delta_i$ (linear interp.)
- up to 18 nodes of G^s in $S^{sT}S^{vT}S^{hT}\delta_i$ (bilinear interp.)

Affordable procedure:
1. computing the 18 non-zero values of $S^{sT}S^{vT}S^{hT}\delta_i$ ($\rightarrow \delta'$)
2. applying the relevant block of the subgrid convolution matrix C^s to these coefficients ($\rightarrow \delta''$)
3. computing the normalization coefficient as the inverse square-root of a scalar product ($N_{ii} = \langle \delta', \delta'' \rangle^{-1/2}$)
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
MPI communications

Four different halo zones:

- **[F]** zone: full grid G^f nodes on a given task (usually provided by the model itself)
- **[A]** zone: subgrid G^s nodes on a given task (define by the subsampling on [F])
- **[B]** zone: subgrid G^s nodes involved in the interpolation
- **[C]** zone: subgrid G^s nodes involved in the convolution

$$\tilde{C} = [F] \ N \ [F] \ S \ [B] \leftarrow [A] \leftarrow [C] \ C^s \ [C] \leftarrow [B] \ S^T \ [F] \ N^T \ [F]$$
MPI communications

Four different halo zones:

- **[F]** zone: full grid \mathcal{G}^f nodes on a given task (usually provided by the model itself)
- **[A]** zone: subgrid \mathcal{G}^s nodes on a given task (define by the subsampling on [F])
- **[B]** zone: subgrid \mathcal{G}^s nodes involved in the interpolation
- **[C]** zone: subgrid \mathcal{G}^s nodes involved in the convolution

\[
\tilde{C} = \begin{bmatrix} \mathbf{F} & \mathbf{N} \end{bmatrix} \begin{bmatrix} \mathbf{S} \end{bmatrix} \begin{bmatrix} \mathbf{B} \leftarrow \mathbf{A} \leftarrow \mathbf{C} \end{bmatrix} \begin{bmatrix} \mathbf{C}^s \end{bmatrix} \begin{bmatrix} \mathbf{S}^T \end{bmatrix} \begin{bmatrix} \mathbf{S}^T & \mathbf{F} & \mathbf{N}^T \end{bmatrix} \begin{bmatrix} \mathbf{F} \end{bmatrix}
\]
Outline

Principles

Subgrid definition

Convolution function

MPI communications

Applying NICAS

Conclusions
Offline computations

- Namelist
 - Model grid

NICAS

- Compute parameters and normalization
- Model grid splitting

- Support radii (if heterogeneous)

Compute MPI distribution

- All parameters
- Parameters for proc 1
- Parameters for proc 2
- Parameters for proc p

Optional tests (e.g. adjointness, dirac application)

- Dirac test results

Restarts
Inline computations

Generic implementation pattern for all linear operations (horizontal and vertical interpolations, convolution):

\[
\text{fld}_{\text{out}} = 0.0 \\
d\text{o } i_s=1,n_s \\
\quad \text{fld}_{\text{out}}(\text{row}(i_s)) = \text{fld}_{\text{out}}(\text{row}(i_s)) \\
\quad \quad + S(i_s) \times \text{fld}_{\text{in}}(\text{col}(i_s)) \\
\end{do}

where \text{fld}_{\text{in}} is the input field, \text{fld}_{\text{out}} the output field, \text{n}_s the number of operations involving \text{row} and \text{col} as indices and \text{S} as coefficients. Easy to code the adjoint operator:

\[
\text{fld}_{\text{out}} = 0.0 \\
d\text{o } i_s=1,n_s \\
\quad \text{fld}_{\text{out}}(\text{col}(i_s)) = \text{fld}_{\text{out}}(\text{col}(i_s)) \\
\quad \quad + S(i_s) \times \text{fld}_{\text{in}}(\text{row}(i_s)) \\
\end{do}
Subset S^c_2 for a heterogeneous support radius r, for the regional model AROME:
Generic implementation

Convolution functions for a heterogeneous support radius \(r \), for the regional model AROME:
Scalability

Elapsed time for one application of the correlation with ARPEGE on a TL149 grid:

Scaling:
- Spectral
- NICAS - 1 com. - $\rho = 4$
- NICAS - 1 com. - $\rho = 6$
- NICAS - 1 com. - $\rho = 8$
- NICAS - 2 com. - $\rho = 4$
- NICAS - 2 com. - $\rho = 6$
- NICAS - 2 com. - $\rho = 8$
Scalability

Elapsed time for one application of the correlation with ARPEGE on a TL399 grid:

Scaling:
- Spectral
- NICAS - 1 com. - $\rho = 4$
- NICAS - 1 com. - $\rho = 6$
- NICAS - 1 com. - $\rho = 8$
- NICAS - 2 com. - $\rho = 4$
- NICAS - 2 com. - $\rho = 6$
- NICAS - 2 com. - $\rho = 8$
Conclusions

Already coded:

- Generic Fortran/C++ code for the NICAS method (offline computations):
 - using ESMF for horizontal interpolation
 - convolution with a Gaspari and Cohn (1999) function, possibly heterogeneous and with complex boundaries
 - exact normalization
 - approximate square-root formulation
 - hybrid MPI/OpenMP parallelization
 - basic tests (adjoint, positive-definiteness, Diracs)

- Inline computations efficiency tested in ARPEGE and AROME models → satisfying scalability

To be done:

- Further testing, validation, documentation
- Inline implementation in a flexible framework...