At Météo-France, the convective-scale model AROME draws its analysis from a 3D-Var scheme. The background error covariances provided to the assimilation system have to be modelled in an appropriate way, since they have a deep impact on the analysis. In the current operational configuration, a spectral covariance model is used with homogeneous climatological variances over the domain whereas they should be heterogeneous and flow-dependent. Consequently, our current system assimilates observations in a sub-optimal way, especially during intense weather events.

Two strategies are investigated to get flow-dependent variances:
- interpolating variances from an ensemble assimilation at global scale (AEARP, operational at Météo France since July 2008),
- computing variances from a small ensemble assimilation at convective scale (6 members), and removing the sampling noise with a spatial filter designed especially for convective-scale variances.

Whereas the first option has been evaluated with mixed results, the second is still under development and several open questions remain.

Diagnostic study of flow-dependent variance maps over the AROME domain

Unbalanced component of specific humidity background error variances at level 50 (~ 945 hPa), for six configurations. This is one of the cases with the highest correlations.

Sample noise in estimated covariances: the Wishart theory

Given an ensemble of \(N \) model states \(\{x^k\}_k \), the sample covariance can be computed by:

\[
B = \frac{1}{N-1} S
\]

where

\[
S = \sum_{k=1}^{N} (x_k^2 - \bar{x}_x)(x_k^2 - \bar{x}_x)^T
\]

with \(\bar{x}_x = \frac{1}{N} \sum_{k=1}^{N} x_k^2 \)

If the states are following a Gaussian distribution \(x_k^2 \sim N(x^0, B) \), then \(S \) is following a Wishart distribution [3], giving the distribution of \(B \).

In NWP application, \(B \) is singular and does not have an explicit PDF, but all moments can yet be computed. The sampling noise \(B^* = B - B^\dagger \) two first moments are thus:

\[
E[B^k] = 0
\]

\[
E[(B^1 - E[B^1])(B^2 - E[B^2])] = \frac{1}{N-1}(B_{12}B_{12} + B_{21}B_{21})
\]

Methodologies and open questions for the linear filtering of variances

Several approaches can be used to compute the filter gain \(H \):

- Expressing approximations of \(\text{Cov}(\tilde{v}) \) and \(\text{Cov}(v^0) \) in a base where they are diagonal, so that \(H \) is diagonal too (e.g. spectral filters in [1] and [2]).
 - A spectral base assumes that signal and noise have homogeneous statistics over the domain, which is not the case according to the Wishart theory. Is it efficient even so ?
 - What base would be the best (wavelets, curvelets, ...) ?
- Setting a parametric model of the filter gain \(H \), whose parameters can be computed from:
 - climatological values,
 - external data (e.g. background correlation length-scales),
 - the raw estimation \(v^\dagger \) itself, making the filter non-linear.
 - What model would be the best (wavelets thresholding, recursive filters, ...) ?
 - By what mean can we specify the filter parameters from other data (external calibration, internal optimization, ...) ?

Linear filtering theory

The raw estimation \(\tilde{v} \) of the noise-free signal \(v^\dagger \) can be linearly filtered:

\[
\tilde{v} = Hv + h
\]

Minimizing the Euclidean norm expectation between filtered and noise-free signal, \(E[|v - \tilde{v}|^2] \), leads to:

\[
\begin{align*}
H &= \text{Cov}(v)\text{Cov}(v^\dagger)^{-1} \\
h &= E[v^\dagger] - HS(v)
\end{align*}
\]

Assuming that the signal \(v^\dagger \) and the noise \(v^0 = v - v^\dagger \) are independent, the linear filter gain can be rewritten:

\[
H = (\text{Cov}(v) - \text{Cov}(v^0))\text{Cov}(v^\dagger)^{-1}
\]

Since we want to filter variances, the noise covariance can be found from the Wishart theory:

\[
\text{Cov}(v^0) = \frac{2}{N-1} B - B^\dagger
\]

References

